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Abstract 

 
Commercial polyolefins are often produced in 

grades distinguished by claims of branch content, branch 
length and even branch-on-branch hierarchies. The 
description of these complex topologies has often been left 
to the imagination of catalytic chemists since no clear 
analytic platform exists to challenge the fairly detailed 
propositions for branch structure. Rheological 
characterization coupled with NMR spectroscopy and 
measures of the hydrodynamic size can give some 
indication of the richness of branching topologies available 
in commercial polyolefins but these methods do not fully 
describe complex polyolefin topologies. In collaboration 
with LyondellBasell we have recently developed a new 
approach to understanding branched structure using small-
angle scattering of neutrons that can elucidate many 
complicated topological features such as branch-on-branch 
structure and new topological descriptions of structure.  
The technique uses only milligrams of sample and can be 
carried out in less than one hour at a national user facility. 
 

Introduction 
 

Synthetic and biopolymers display chain 
structures that often contain complex topologies ranging 
from star structures and dendrimers to randomly branched 
structures and cyclics, Figure 1.  Generally, these 
topologies dominate the physical properties of these 
materials [1].   

 
Techniques for the quantification of topology can 

involve observation of the mass of the molecule and the 
encompassing size as measured by the hydrodynamic 
radius under a non-draining assumption for instance.  This 
approach can lead to the mass-fractal dimension, df, which 
is related to the packing density of an object (through a 
logarithmic relationship).  Complex objects, however, are 
not fully described by their density and the mass fractal 
dimension is insufficient to describe transport properties or 
electrical conductivity for example.  At the opposite 
extreme spectroscopic techniques can describe local 
features of a complex structure such as the number of 
branch sites or local interaction between chemical species.  
Again, in the absence of other information, spectroscopic 
descriptions are incomplete while they give a good 
measure of the number of structural bridging sites per 
molecule for instance. 

 
A new application of static neutron scattering for 

the direct quantification of topology has recently been 

developed to quantify the topology of branched structures 
[2].  For example the mole fraction of a molecule in 
branches, φBr, can be directly determined using this SANS 
method.  Further, quantitative measures of 1) the 
convolution or tortuosity of the structure and 2) the 
connectivity of the branching network can be made [2].  
The work is of pivotal interest to many areas of the 
polymer industry including polyolefins where a picture of 
branch structure has long been sought to correlate with 
variation in catalyst, precursor and reaction conditions.  
This description of topology can further be generalized to 
describe a much wider range of topologies than long-chain 
branched polyolefins.  In this talk we demonstrate the 
general usefulness of our topological description of 
complex structures for long and short chain branched 
polyethylene.  We have already applied this approach to 
disordered nanomaterials such as chain aggregate 
structures [3-5], hyperbranched polymers [6], cyclic 
polymers [5,7] and biomolecules [8]. 

 
Topological Model 

 
A complex molecule can be defined by a mass or 

number of constituent units, z.  Constituent units are Kuhn 
units for polymer chains, residue units for a protein or 
primary particles for an aggregate.  For the purpose of a 
general model we consider a constituent unit to be a 
sphere.  The z spheres in a complex molecule are 
constructed into chains that course through 3d space 
following a path that is described by the end-to-end 
distance, R.  The path may be tortuous or may be direct 
depending on the synthesis and equilibration conditions.  
The shortest paths through the molecule that extend across 
the molecule have less than or equal to z constituent units.  
We call the average of these paths the minimum path, p.  
Since this path could be considered separate from the 
complex molecule, and since it is composed of a linear 
path of spheres, we can measure the mass fractal 
dimension of this path, dmin, 
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where p is the number of primary units (Kuhn units) of size 
dp in the minimum path and R is the end-to-end distance of 
the minimum path and of the entire complex molecule.  
dmin is less than or equal to the mass fractal dimension for 
the complex molecule, df, 
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Since both z and p are related to (R/dp) we can 

write, 
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where c is called the connectivity dimension.  The model 
has decomposed the mass fractal dimension into two parts, 
one reflecting network connectivity, c, and one reflecting 
convolution or tortuosity, dmin and p.   
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In analogy to p and dmin in equation (1), we can 
define a number “s” associated with the connectivity 
dimension c, 
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s reflects the number of spheres that would be needed to 
connect all network junction and end points in the complex 
molecule (circles in figure 1) by straight lines.  s is smaller 
or equal to the total mass z, just as p is smaller or equal to 
z, Figure 2.  In analogy to equation (3) we can write, 
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in other words, the total structure, z, is the connectivity 
path raised to the dmin dimension.   
 

The mole fraction branching in the molecule, φBr, 
is given by, 
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Determination of Connectivity and Tortuosity 
by Small-Angle Neutron Scattering 
 

Scattering under the Rayleigh-Gans 
approximation (x-ray and neutron scattering) is often 
reduced to generic local scattering laws such as Guinier’s 
law and power law scattering (e. g. Porod’s Law).  
Guinier's law [9-11] is given by, 
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where I(q) is the scattered intensity, q = 4πsin(θ/2)/λ, θ is 
the scattering angle and λ is the wavelength of radiation, 
Rg

2 is the mean square radius of gyration and G is defined 
as Npnp

2 where Np is the number of polymer coils in a 
given volume and np

2 is a contrast factor equal to the 
excess number of electrons for the polymer coil compared 
to the solvent for x-ray scattering. At higher-q the fractal 
power law scaling equation [9,10] is appropriate for 
polymer coils, 
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where Bf is the power law prefactor and df is the mass 
fractal dimension that describes the relationship between 
coil size and mass. These local scattering laws give an 
account of local features like size and surface or mass 
scaling. They cannot independently describe topological 
features like branching [2]. 
 

Consider the class of all 2 dimensional objects in 
terms of the connectivity/tortuosity model.  At one extreme 
is the Brownian linear path where z = p and c = 1 so df = c 
dmin = dmin.  At the opposite extreme is a regular object 
where a linear short-circuit path exists through the 
structure, p = R, and dmin = 1 so df = c dmin = c.  A disk is 
the unique 2-d object that displays dmin = 1.  Between these 
extremes we can consider a wide variety of objects by 
varying dmin and c holding cdmin to 2, Table 1.  Figure 5 
shows that for Brownian walk and disk scattering with 
identical Guinier regimes (Rg and G), the signature of an 
increase in structural connectivity and reduction in 
structural tortuosity is a shift in the power law prefactor 
relative to the Guinier regime creating a knee like feature 
at about 0.007 Å-1 for the lower curve. 

 
The shift in the power-law regime relative to the 

Guinier regime can be quantified through consideration of 
Debye’s (and Peterlin’s) approach to the calculation of the 
scattering function for a linear Brownian chain [12, 13] as 
modified by Benoit [14] for arbitrary mass-fractal 
dimension and considering an integral over all possible 
minimum paths through the complex molecule [2].  The 
parameter dmin can be calculated from scattering using (8) 
and (9) to account for branched structures [2], 
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where G2 is the Guinier prefactor (12) for the coil (or the q 
= 0 intensity), Rg2 is the coil radius of gyration (12), df is 
the mass fractal dimension (13) and Bf is the power-law 
prefactor (13).  Having df from the power-law slope at 



 

high-q & dmin from (14), c is obtained from c = df/dmin and 
p from z1/c. 
 

We will present recent applications of this 
topological model to high and low density polyolefins of 
variable branch structure as well as some model branched 
polymers.   
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Table 1.  dmin, c and df for simple objects. 
 
Object dmin c df 
Rod 1 1 1 
Disk 1 2 2 
Brownian Chain 2 1 2 
 

 

  
           (a)                           (b)                       (c)                              (d)                             (e) 
 
Figure 1. Different branched structures as discussed in text; grey indicates a minimum path of length p through the 
molecules; circles indicate points of topological distinguishability (ends or junction points). 
 



 

 
              (a)            (b) 
Figure 2.  Topological components of a complex molecule.  a) network connectivity indicated by straight paths between 
nodes and free ends of total length s.  b)  Structural tortousity as indicated by minimum path through the structure of length 
p. 
 
 

 
            e)           f) 

               
Figure 3. Schematic representation of the minimum path, p, through a a) linear chain, b) 4-arm star, c) cyclic, d) disc, e) a 
long chain branched aggregate, f) a branch-on-branch structure.  The minimum path for a cyclic would constitute half the 
chain (indicated by the broken line and lighter circles) while the connectivity path, s would be a straight line across the 
cyclic. 
 
 



 

(c)  
Figure 4. a) Linear aggregate, p = 23, b) Branched aggregate; composed of primary particles, z = 63, p = 23, s = 54, df = 
1.37, c = 1.32, dmin = 1.04. The open circles in b) represent minimum path, p, through an aggregate [2]. c) deconvoluted 
structure with s open circles tracing the path of b) with straight lines, s = 54. 
  

 

 
Figure 5.  Scattering from a Brownian coil (top and dark) and scaling features for scattering from a thin disk (bottom and 
grey).  Power-law scattering is indicated by the dashed line; Guinier scattering by the exponential decay.  Curves are 
calculated from the unified function.  Circled area shows distinguishable feature associated with connectivity/tortuosity of 
the molecule. 
 
 
 


